Cycling chaotic attractors in two models for dynamics with invariant subspaces.
نویسندگان
چکیده
Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles between saddle-type invariant sets. These saddles may be chaotic giving rise to "cycling chaos." The robustness of such attractors appears by virtue of the fact that the connections are robust within some invariant subspace. We consider two previously studied examples and examine these in detail for a number of effects: (i) presence of internal symmetries within the chaotic saddles, (ii) phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and (iii) multistability of periodic orbits near bifurcation to cycling attractors. The first model consists of three cyclically coupled Lorenz equations and was investigated first by Dellnitz et al. [Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 1243-1247 (1995)]. We show that one can find a "false phase-resetting" effect here due to the presence of a skew product structure for the dynamics in an invariant subspace; we verify this by considering a more general bi-directional coupling. The presence of internal symmetries of the chaotic saddles means that the set of connections can never be clean in this system, that is, there will always be transversely repelling orbits within the saddles that are transversely attracting on average. Nonetheless we argue that "anomalous connections" are rare. The second model we consider is an approximate return mapping near the stable manifold of a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured. We examine the set of nearby periodic orbits in both parameter and phase space and show that their structure appears to be much more complicated than previously suspected. In particular, the basins of attraction of the periodic orbits appear to be pseudo-riddled in the terminology of Lai [Physica D 150, 1-13 (2001)].
منابع مشابه
Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection
We examine a model system where attractors may consist of a heteroclinic cycle between chaotic sets; this ‘cycling chaos’ manifests itself as trajectories that spend increasingly long periods lingering near chaotic invariant sets interspersed with short transitions between neighbourhoods of these sets. This behaviour can be robust (i.e., structurally stable) for systems with symmetries and prov...
متن کاملComplexity in Hamiltonian-driven dissipative chaotic dynamical systems.
The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, stra...
متن کاملProduct dynamics for homoclinic attractors
Heteroclinic cycles may occur as structurally stable asymptotically stable attractors if there are invariant subspaces or symmetries of a dynamical system. Even for cycles between equilibria, it may be difficult to obtain results on the generic behaviour of trajectories converging to the cycle. For more complicated cycles between chaotic sets, the nontrivial dynamics of the ‘nodes’ can interact...
متن کاملHypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics
Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional paramet...
متن کاملCycles homoclinic to chaotic sets; robustness and resonance.
For dynamical systems possessing invariant subspaces one can have a robust homoclinic cycle to a chaotic set. If such a cycle is stable, it manifests itself as long periods of quiescent chaotic behaviour interrupted by sudden transient 'bursts'. The time between the transients increases as the trajectory approaches the cycle. This behavior for a cycle connecting symmetrically related chaotic se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2004